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Abstract. Three-dimensional contact problems in the classical theory of linear elasticity can often be regarded as
mixed boundary-value problems of potential theory. In this paper we examine the problem where contact between
the indenting object (called a punch) and the elastic medium is maintained over an infinite strip. It is assumed that
a rigid frictionless punch with a known profile has indented a homogeneous, isotropic and linearly elastic
half-space. Applying the theory of Mathieu functions, an analytic solution of Laplace's equation is obtained
through separation of variables in the elliptic cylinder coordinate system. Finally three examples are discussed
where in each case the normal component of stress under the punch is numerically evaluated.

1. Introduction

Consider an elastic medium occupying the infinite half-space z > 0. A punch (or inden-
tation) problem, in the theory of elasticity, is a problem where a body (called a punch) is
pressed against the elastic medium under the action of a normal force, as a result of which
certain displacements and stresses are created within and on the boundary of the medium.

Let S be the region of contact, that is, the part of the boundary of the elastic half-
space consisting of those points which after deformation are in contact with the displaced
surface of the base of the punch, and let S be the region of the boundary of the half-space
outside S.

Throughout this paper we shall assume the following:

(a) the elastic medium is linearly elastic, homogeneous and isotropic,
(b) the punch is a perfectly rigid body,
(c) there is no friction between the punch and the surface of the elastic medium,
(d) the normal component of stress is zero on S,
(e) there is complete contact between the base of the punch and the elastic medium.

The problem of static equilibrium, and in particular the problem of determining the
state of stress in an elastic half-space where part of its boundary is subjected to a normal
force Q, can be reduced to a mixed boundary-value problem in potential theory. The displace-
ment and the state of stress of an elastic medium under normal loading, where the normal
component of stress, z,,, is prescribed on part of the boundary, the normal component of
displacement, w, is given on another part of the boundary, and shear stresses are absent, can
be determined when we have found a function (x, y, z) which is harmonic everywhere
except on the region S of loading and vanishes at infinity with the following behavior:
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T - QR, where

Q = ffjp(x,y) dxdy, R = (x2 + y2 + z2)1/2

and p(x, y) is the normal pressure applied to the punch. Then the Papkovich-Neuber solution
([6], Ch. 1, Sec. 1.10)

2pd = 4(1 - v) - V{(r I) + } (1.1)

to the problem of elastic equilibrium can be used to arrive at the required stress and
displacement components. In (1.1), d(u, v, w) is the displacement vector, r is the position
vector of a field point, Y and qD are a pair of vector and scalar functions, respectively, which
in the absence of body forces satisfy V2 ¶ = 0, and V2 D = 0; v is Poisson's ratio and is
the shear modulus (both constants).

Following the notation of Gladwell [6], if v is chosen so that I = (0, 0, T) then the
components of displacement d = (u, v, w) are given by

aq' ai
2,uu = -z 0x (1.2a)x Ax

2#uv = -z O- (1.2b)
ay ay

and

2,uw = 4( - v)T- z- + + (1.2c)

The corresponding components of the stress tensor are given by

xz = (1 - 2v) -- - , - (1.3a)
x xz axaz

Tyz = (I -2 - z - - - (1.3b)
ay ayaz ayaz'

aT 02 T 02 (I

Tzz = 2(1 v) v) a 2 - a (1.3c)z aZ
2

- ___

For zero shearing stress on z = 0 we have Tz (x, y, 0) = yz (x, y, 0) = 0 for all x and y, and

(1 - 2v) = 0<. (1.4)az
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Consequently the normal component of stress is given by

0'v a2't
zzz = z - Z az2 '

Thus we obtain two quantities of particular interest, w(x, y, 0) and zz (x, y, 0), i.e., the normal
component of displacement on S and the normal component of stress on S, respectively

(1 - v)
w(x, y, 0) = (x, y, O),

Tzz(x, y, ) =

It can be shown [6] that this special case of the Papkovich-Neuber solution is satisfied by
a representation of v in the form

(x, y, ) = 2 -ffP( dx' dy' (1.5)

where

RI = [(x - x')2 + (y _ y) 2 + z2]1/2

is the distance from the point (x, y, z) of the elastic medium to the point (x', y', 0) of the
surface and zz(x, y, 0) = -p(x, y).

Furthermore, the function D, which is required in the derivation of the components of
displacement u and v (1.2a,b) can be found from (1.4) and (1.5):

-2(x, y, z) s In (z + R)p(x', y') dx' dy'.

It is important to note that the potential problem, when solved, gives a solution of the
punch problem only if zz(x, y, 0) < 0 for all (x, y) in S. This is due to the requirement that
there should be complete contact between the base of the punch and the medium.

The method of employing an appropriate coordinate system and solving Laplace's
equation in that system has been used by Lure [9] and Shail [11]. Lure solves several contact
problems where the contact region S is assumed to be circular and Shail solves the problem
where S is elliptic. Here, however, we shall provide a solution for the case where S is an
infinite strip.

2. Formulation of the general boundary-value problem

Let the contact region, S, be defined in terms of the Cartesian coordinates (x, y, z), by
- oo < x < oo, I Yl < f and z = 0. A rigid frictionless punch is applied to the region S, its
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profile being given by a function K(x, y). The boundary conditions can be stated as:

w(x, y, 0) = K(x, y) on S,

rz(x,y, 0) = 0 on S.

Hence we seek a solution to the boundary-value problem for the harmonic function , where
for the elastic medium we have

(i) V2 T = 0 for z > 0,
(ii) T -* 0 as R - o, (R = (x

2
+ y2 + 2)

1
/2), in z > 0,

(iii) aTP/z = 0 on S,
(iv) {(1 - v)/l} (x, y, O) = K(x, y) on S.

The function K(x, y) can always be expressed as the sum of four functions each having
symmetry or antisymmetry about one of the axes x = 0, y = 0, and because of linearity we
can superpose solutions corresponding to these four functions. To simplify the analysis,
therefore, we shall assume that

(v) K(x, y) is symmetric about y = 0,
(vi) K(x, y) is symmetric about x = 0.

We are now going to transform to elliptic cylinder coordinates. This transformation will
change the boundary values accordingly so that they will no longer be mixed [3]. Let the
elliptic cylinder coordinates of a point be given by the variables (x, 4, ?/) which are related
to the Cartesian coordinates by

x = x, y = fcosh cos , z = fsinh sin , (2.1)

where - < / < i7, and 4 > 0. The surfaces corresponding to 4 = constant consist of a
family of confocal elliptic cylinders; that for which = 0 is such that its section by the plane
x = 0 is an ellipse with foci (0, _ f, 0), eccentricity sech 40. For 4 = 0 we get the degenerate
surface consisting of an infinite strip in the x,y-plane of finite width 2f. This is merely the
case of an elliptic cylinder of eccentricity 1 with zero minor axis and finite major axis 2f. The
surfaces corresponding to ? = constant are portions of confocal hyperbolic cylinders which
are normal to the surfaces 4 = constant.

3. The general solution of the boundary-value problem

We now transform to the elliptic cylinder coordinate system where will be restricted to
0 < r < 7r since we are only concerned with the half-space occupied by the elastic medium.
In terms of (x, , /), Laplace's equation V2T = 0 is given by

±2h 2 - 2 02 0
a x2 f2(cosh 2 - cos 2) , 42 + (3.1)-
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Let T = X(x)F(S)G(1), then

X" 2 F G"X
X f2(cosh 2 - cos 2) F 0.

The separated equations are:

X" = X, (3.2a)

F" + (f 2 cosh 23 - )F = 0, (3.2b)

G" + ( - f2 cos 2)G = 0, (3.2c)

where and f are separation constants.
Equation (3.2c) is Mathieu's equation and equation (3.2b) is the modified Mathieu

equation. In making use of Mathieu functions we shall follow the notation of McLachlan
[10].

In view of the change of coordinates, conditions (i) to (vi) in Section 2 are to be replaced
by

(i)' equation (3.1) holds for e (0, o), ir e (0, ir) and x e (- oo, oc),
(ii)' - 0 as Ixl - co or - oo, for q E [0, 7r],

(iii)' since

a cosh sin a sinh 5 cos r a
az f(sinh2 + sin 2q) a f(sinh2 5 + sin2 '/) a-1

and S is the region where 5 > 0, q = 0, or 7r, then a/laz = 0 on 3 is equivalent to

1 a'
I i h_ g- 0 at r = 0 and r = 

fsinh aq

where e (0, o) and x e (- oo, co),
(iv)' T(x, a/, 0) = H(x, il), where q E (0, 7r), x e (- o, oc) and H(x, 'i) - {/(1 - v)}K(x, y),
(v)' H(x, ql) is symmetric about = 7r/2,

(vi)' H(x, q) is symmetric about x = 0.

For X in (3.2a) to be finite, must be negative. Let a = - k2 so

X = A cos kx + B sin kx. (3.3)

Since the solution is assumed to have the form = X(x)F()G(,q), we require X(x) and
G(?1) to have properties corresponding to the symmetries of H(x, q1) given by (v)' and (vi)'.
In the first place (vi)' implies that X = A cos kx. Also since = - k2 , if we let k2f 2 = 4h 2,

then equation (3.2c) becomes

G" + ( + 2h2 cos 2)G = 0.

207

(3.4)
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This is Mathieu's equation, in which the parameter usually written as q is negative. This
point is particularly relevant when we use (as we shall later) the so-called functions of the
third kind.

There are four types of basically periodic solutions of (3.4) (i.e., of period 7r or 27r) called
Mathieu functions of integral order of the first kind. Two of these are even while the other
two are odd, and they are expressed by the following expansions [8]:

ce2(j, -h 2 ) = E A2) (-h 2 ) cos 2rqi, (3.5a)
r=O

ce2n+,(rI, -h 2 ) = A2n+) (h 2 ) cos (2r + 1)it, (3.5b)
= 2 r + 1 co2

r=O

se2+,(, -h 2 ) = E B 2 +') (-h 2 ) sin (2r + 1)?, (3.5c)
r=O

se2n+2(r, -h) = E B2+2)r (_h2 ) sin (2r + 2)/. (3.5d)
r=O

It should be noted here that the above four functions are possible solutions of equation
(3.4) provided ,B (which is dependent on h2) is one of the countably infinite real eigenvalues
of (3.4). The corresponding eigenvalues for the expressions (3.5a, b, c, d) are denoted
respectively by a2, (-h 2 ), a2n+1(-h 2), b2n+,(-h 2 ) and b2,,+2(-h 2 ), where n is a positive
integer or zero. We also know that in this case (i.e., when the equation has as solution a
periodic Mathieu function of one of the four types above) the second solution is not periodic
([1], Sec. 2.4.1).

From condition (iii)' we have G' () = G'(O) = 0, which implies that G is a Matheiu
function of the first kind (i.e., of period it or 2n7)([l], Sec. 2.1.1), and G'(O) = 0 implies that
G must be ce2n(r/, -- h2) or ce2+,,, -h 2 ). Finally from condition (v)', G() = ce2n(, -h 2)
and hence we can let B = a2n(-h2).

Next, equation (3.2b) implies that

F" + (-2h2 cosh 26 - a2n)F = 0, (3.6)

whose four solutions with period n7i and 2ri are given by McLachlan [10]:

Ce2n(, h2 ) - ce 2,(ir, -h 2 ) = A2' ) (-h 2 ) cosh 2r,
r=O

Ce2n+,(, -h) e2 (i, h2) = ACe2n+(i, (h2) cosh (2r + l),
r=O

Se2n+,(, -h2) d (-i)se2n+,(i, -h 2 ) = B22++l) (-h 2 ) sinh (2r + 1)5,
r=O

Se2n+2(, _h2) - (-i)se 2 .+2(iz, -h 2 ) = 2n 2) (-h sinh (2r + 2).
r=O
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We have, of course, many possible ways of choosing a second solution independent of
Cem(, - h2 ) (or Sem(5, -h 2 )).

One such solution is denoted by Fekm(r, -h 2) (or Gekm(~, -h 2) respectively). These
functions are expressible in infinite series of the K-Bessel functions (modified Bessel functions
of the third kind Kv). For example [10],

Fek2 (, -h 2 ) = (-l)nCe( h2) E (-1)rA) (h2)K2 ,(2h cosh I).

The usefulness of Fek2 (, - h2) lies in its asymptotic behavior as -* o. The following
asymptotic forms are given by McLachlan ([10], Sec. 11.12):

P, P,(h)Ce 2 (r, _h2) r ( /v-l/2e, as ( - oo,

Fek2.(, -h 2) P2 v-/2e- , as - oo,

where

P,(h) = (-1)nce 2 (0, h2)ce 2 , ( , h2)/A?) (h2 ),

and v = he'.
Now we can choose Ce 2n,(, -h 2) and Fek2,(, -h 2) as a pair of linearly independent

solutions of (3.6). However condition (ii)' requires that the general solution tends to zero as
- co, and since Fek2n,(, - h2) is the only one which shows this behavior, we must exclude

the solution Ce2,(, - h2). Hence a separated solution is of the form

'n ~- tn (X, , , h)

2hx
= Bn(h) cos -f ce2,(r, h2) Fek2(S, -h 2 ),

where n is an arbitrary non-negative integer, h is an arbitrary non-negative parameter, and
Bn (h) an arbitrary constant, written in this way since n is an integer-valued parameter while
h is continuous.

The above solution is, however, a single separated solution and cannot be expected to satisfy
the remaining boundary condition (iv)'. Since the parameter n is discrete whereas the parameter
h is continuous and can take any non-negative value it is natural to superpose solutions by
summing over n from zero to + oo and integrating with respect to h from zero to + co. The
coefficient B,(h) can then be determined if we let the general solution satisfy condition (iv)'.

A general formal solution is thus given by

= Z E B"(h) cos -ce2(, -h 2 ) Fek2n(, -h 2 ) dh. (3.7)
n=O
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Ignoring questions of convergence for the moment, and proceeding formally with the
solution, (iv)' implies

2hx
H(x, ) = C,(h) ce2 n(r, -h 2 ) cos - dh, (3.8)

n=~f

where

Cn(h) = B(h) Fek2, (0, -h 2).

Writing (3.8) as

2hx
H(x, ) = I0 g(h, r/) cos f dh,

where

g(h, ) = E C,(h) ce2, (, - h 2),
n=O

and using the Fourier cosine transform formulas, we get

g(h, ) = 4 fgo H(x, ) cos 2hx dx

(provided the integral exists).
Multiplying both sides of the above equation by ce2m (, - h2) and integrating with respect

to from zero to nr, we get:

fo E Cj(h) ce2n(11, -h2)ce2m(?1, -h 2) dq
n=O

2hx
= o ce2m,(, -h 2) fo H(x, /) cos f d dx?. (3.9)

Still proceeding formally, we interchange the order of integration and summation on the
left-hand side of (3.9) and use the orthogonality of Mathieu functions ([10], Sections 2.19,
2.21) to deduce that the left-hand side is equal to (r/2)Cm(h). Therefore

8 2hx
Bn(h) = fit 2 Fekn(, - h2 ) fo o H(x, ir) ce2 (, -h 2 ) cos 7 dx d. (3.10)

Having evaluated Bn(h), the solution P of the problem is then given by (3.7). From the
equations of elastostatics (1.2a, b, c) and (1.3a, b, c) the corresponding displacements and
stresses can be obtained. In particular,

w(x, y, O) = (1 o B(h) cos ce2n(0 -h)Fek2 n (cosh-' I, -h2 dh.
(3.11) f
(3.11)
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Moreover, using condition (iii)' and (3.7), the normal component of stress under the punch
(i.e., on S) can be expressed by

(x, y, 0) = (f - y2)-12 Bn(h) OS 2h
n=O f

X e2n(COS- I , h2) Fek2(0, -h 2 ) dh, (3.12)

where I yl < f
We observe that the above function has singularities at y = + f, i.e., at the edge of the

contact region. In punch problems where complete contact is assumed, one expects to find
stress singularities of the square-root type at the edge of the contact region.

4. Validity of the formal solution

The validity of the formal solution thus obtained depends of course on the behavior of the
prescribed function H(x, ir).

For a given profile H(x, il), one can examine the integral (3.10) for convergence and for
differentiability with respect to x, 5, and t/, then proceed to a corresponding investigation of
the expression for T in (3.7).

More generally, the formal solution may be shown to be valid by specifying a set of
sufficient conditions on H(x, rl). In what follows we shall assume that H(x, ,/) satisfies a set
of eight conditions which are clearly reasonable from a physical point of view.

Let us begin by imposing the following conditions on H(x, qI):

(c.1) There exists a function A(x), such that IH(x, q?)I < Ao(x) for all / E [0, r] and
AO(x) L[0, o).

(c.2) H(x, ,l) is a continuous function of both x and for all x e [0, oo) and all e [0, r].
(c.3) As a function of ,/, H(x, ) is four times continuously differentiable (i.e., partially with

respect to qr) for all e [0, r] and all x e [0, oo).
(c.4) For i = 1, 2, 3, 4, there exist functions Ai(x) such that la'H(x, /)/Oil < Ai(x), for all

ir e [0, 7r], and Ai(x) e L[0, oo).
(c.5) OH(x, ql)/ax is a continuous function of both x and q for all x e [0, oo) and all / e [0, 71].
(c.6) For each x e [0, oo), ajH(x, /)/Oj = 0 at ri = 0, and , = , forj = 1, 3.

Before stating the remaining conditions, we define

M0(h) = max IT

and for i = 1, 2, 3, 4,

M1(h) = max I
O~r~~~

211



212 A. Darai and F.M. Arscott

where

T = T(h, I) dO H(x, l) cos 2 dx.

(The existence of these expressions is ensured by conditions (c.1) and (c.4) above.)

(c.7) Then for integers i and m, where 0 < i < 4 and 0 < m < 8, So hmM,(h) dh < oo.
(c.8) There exists a constant, K, such that for h e [0, oo) and for integers i and m, where

0 < i < 4 and 0 < m < 8, hMi(h) < K.

In addition it should be kept in mind that H(x, l) is assumed to be an even function of
x and ( - r/2).

Let

q d. 2hx
T(h, 1) fo H(x, 'l) cos f dx, (4.1)

then (c. 1) implies the existence of T(h, ai) for all h > 0 and e [0, it].
Next we expand T(h, ql) as a Mathieu function series:

T(h, ql) = E D(h) ce2n(/, -h 2). (4.2)
n=O

From the general theory of Sturm-Liouville expansions ([7], Sec. 11.5) we know that if, for
any fixed real h, T(h, q) is a continuous function of i?, where q belongs to some finite interval,
then the Fourier series and the Mathieu-function series expansions of T(h, 1) are equiconver-
gent (i.e., the two series will converge under exactly the same conditions) on the same finite
interval. Now (4.1), (c.1) and (c.2) together imply that T(h, ) is a continuous function of
?I for each fixed h > 0. Furthermore (c.3) and (c.4) imply that T(h, qr)/&l is also a
continuous function of q for all ? e [0, rt] and each fixed h > 0. Hence for each h > 0, the
infinite series (4.2) converges uniformly in to T(h, rl). The coefficients D"(h) are found by
the usual technique (analogous to that for the Fourier series coefficients) as follows:

Multiplying both sides of (4.2) by ce2((, - h2), integrating with respect to rj from 0 to r
and applying orthogonality properties of Mathieu functions, we get

o ce2n(q, -h 2 )T(h, ) d = D(h) (4.3)

(term by term integration of IZ' 0 Dn(h)ce2 (r, -h 2 )ce2,(, -h 2) is permitted since this is a
uniformly convergent series of continuous functions of i, for each fixed h > 0).

Now let

B,(h) = Fek (h) (4.4)
7rf Fek, (, - h 2)

and note that Fek2(0, -h 2 ) # 0 for any n = 0, 1, 2, . .., and any h > 0 ([4], Appendix A).
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So

4 2
T(h, 'i) = B(h) Fek2 n (0, -h 2 ) ce2 (, -h 2 )
ffn r n=O

and

2hx 2o cos . B.(h) Fek 2n (0, -h 2 ) ce2 (, -h 2) dh

4 2hx

= 7 o cos f- T(h, ) dh

4 2hx 2hx'
fi o o cos f H(x', rl) cos f dx' dh

= H(x, q).

The validity of the last step, which states that H(x, ql) is equal to the inverse cosine transform
of its transform is ensured by (c.1), (c.2) and (c.5). Hence expression (3.8) is justified, where
C,(h) = {4/(7rf)}D.(h), and B,(h) is given by (3.10). To show that the function T(x, 5, 0),
given by (3.7), is a continuous function of x, 5 and q?, we start by rewriting as

4 2hx 2Fek 2 ( , -h 2 )
'I(x, =, ) cos - D.(h) ce2 (, -h 2 ) dh (4.5)

f n=o Fek2 (0, -h 2 )

where D(h) is given by (4.3). For n = 0, 1, 2, . . ., h > 0 and > 0,

Fek2 (, - h2)
Fek2n (0, - h 2) 1

Ice2 (, -h 2 )1 < Yo + y1h + y2h2

where y, 1,, and Y2 are positive constants, and

2 (a2 + 2h2 + )D (h) < g (1 + 4h2 )M0(h) + M 2(h)

([4], Appendices B, C, D) where Mo(h) and M2(h) satisfy condition (c.7). From this inequality
it follows that

2[(1 + 4h2)Mo(h) + M2(h)]
4n2 + 
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Hence

D (h) ce 2 ( I - h2) Fek2n(O, -h 2)

< Mo h + (h) hi+ M( h) (4n2 + 1)-'
i=O j=o

where ai and fBj are positive constants.
Using condition (c.8) and Weierstrass's M-test we deduce that

E D,(h)ce2,(q, -h 2 ) Fek2 ( , -h 2)
n=O Fek 2 (O, -h

2
)

is uniformly convergent with repect to i/, and h. Furthermore, from the general theory of
Mathieu equations, ce2n(, - h2) is continuous in ? and h, Fek2n (, -h 2) is continuous in 5
and h, and from (4.1), (4.3), (c.1) and (c.2) Dn(h) is also continuous. Hence the function
represented by the above infinite series is continuous in , 5 and h.

Next let

cos IN 2hx 2)Fek2n(, - h2)
fN(X f2 cos x Dn (h) e2n Fek2,(, -h 2)

then for each N = 1, 2, ... , T is a continuous function of x, and q and by condition
(c.7), the sequence of functions TN converges uniformly to T'. Hence (x, 4, ,) is a
continuous function of x, , and .

Differentiating the integrand in the expression for , (4.5), twice partially with respect to
x only introduces factors h and h2 in the integrand. In either case the uniform convergence
of the integrand is ensured by condition (c.7) and the continuity of the integrand, as a
function of x, , ?I and h, is not affected.

From the inequalities for the derivatives of ce2,, and Fek2n ([4], Appendices) it follows that
T is twice partially differentiable with respect to and /. Furthermore one can use the
Riemann-Lebesgue lemma to show that for each in [0, ni], TP - 0 as Ixl - oo or - oo.

Therefore T'(x, 6, U) represented by (3.7) is continuous and satisfies Laplace's equation as
well as the boundary conditions of the stated boundary-value problem, provided the function
H(x, q) satisfies the conditions (c.1) to (c.8).

5. Examples

Example I

We consider first a situation in which the depth of the punch profile varies only longi-
tudinally. Let H(x, r) = 512/(12 + X2) where 5 and 1 are parameters having the dimension
of length, measuring the maximum depth of the punch which occurs at the origin.
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Then

Co 2hx\ 1
2 216 21h

T(h, ) = os21 . 21hJO c f / )T12 + dx f exp

Also

Mo(h ) 216 ex( 21h)M(h) = exp (- f)

and for i = 1, 2, 3, 4, M,(h) = 0, so conditions (c.1) to (c.8) of Section 4 are satisfied.
Moreover

D. (h) = 4f exp (_ h 2- ) fo ce 2 (, -h 2 ) drl (5.1)

and

o ce2n (, -h 2 )d = ( 1)"rAo2) (h2),

where A(") (h2) is the first coefficient in the Fourier series expansion of ce2" (, h2). It may be
noted here that A" (- h2) = (- 1)nA0) (h2 ).

This example has been chosen to illustrate the theory because, while being smooth and
physically reasonable, it allows us to express the coefficients Dn(h) explicitly.

In punch problems, one of the quantities of interest is the normal component of stress
under the punch, i.e., zz(x, y, 0), where

4 2hx 
Tzz(X, y, 0) = f(f2 y2)1/2 O cos f D"(h)

cos dh, (5.2)x ce2 (os-' () F ek (0 - 2) dh, (5.2)
' Fek2, (0, h

2 )

and the total force exerted on the punch is given by

_ j f Tzz(x y, 0) dy dx

= 4f o fo/2 T(x, f cos r, 0) sin 11 di dx.

Evaluation of D, (h), z,(x, y, 0), and the total force can only be done numerically, but in
view of recent progress in the techniques of computing Mathieu functions, this is by no
means an impossible task.

To illustrate this observation, we take the particular case where 1 = 3f, so that the
substantial part of the punch profile is long compared with its width. This has the effect that
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the factor exp (- 21h/f) tends to zero quite rapidly as h increase, so that it is only necessary
to compute the Dn(h) for small values of h.

Moreover, for such a profile, it is only necessary to consider small values of h, for the
following reason: for h = 0, Mathieu functions reduce to trigonometric functions, namely

ce0 (r, 0) = 2-'/2, e2 (r/, 0) = cos 2n/, (n > 1)

and for small values of h the Mathieu functions remain close to these approximations. Hence,
for n > 2 and h small, the coefficient A() is small compared with 1, so that Dn(h) is itself small
([10], Sections 3.27 to 3.25).

Using the method described by Arscott et al. [2], A(n) (h2) have been computed for n = 0,
1, 2 and h = 0(0.1)2. From these the quantities

X, = fo ce2"(r/, -h 2) d = (- 1)7rA (h2) (5.3)

have been computed for the same n, h, and are given in Table la of the Appendix. Relation
(5.1) then gives the Dn(h).

To evaluate the stress Tz immediately below the center of the punch (i.e., at x = 0, y = 0),
as well as at the edge of the punch (i.e., at x = 0, y = f), we proceed as follows: let

V"(h) = Fek2"(0 h 2) (5.4)
Fek2 n(O, - h)

and

Un(q, ,, = D (h)V,(h)ce2"(r, -h 2 )

= () D (h)V,,(h) ce2 - h2)

so that = 0 corresponds to the edge of the strip and = 7r/2 corresponds to the center
of the strip. Then, from (5.2),

Tzz(0, y, ) 7 rf(f2 y2)1/2 U (cos- f h) dh

where

U(, h) = U0 (r, h) + U, (?, h) + U(r, h).

Finally we truncate the above integral since the integrand is small when h > 2, and evaluate

I(Q) = 2 U(, h) dh.
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The quantity V (h) is computed by a general technique developed by the second author (to
be published), and is also tabulated in the Appendix (Table 2).

The normal component of stress under the punch can now be approximated by

46
Tz=(0, y, 0) f(f 2 2)1/2 

where

I(2) - 0.4818, I(0) 0.4130,

and furthermore z, is negative everywhere under the punch. Let

J(x) = lo cos U ( ,h dh,

then along the center line of the punch in the direction of the positive x-axis (and also for
x < 0 by symmetry) we have the following approximation:

46
Trz(x, 0, 0) 2 J(x).

7rf

The following table gives values of J(x) for x/l = 0(0.1)1.2. It may be noted that the
profile's concavity remains unchanged for x/l > 0.58.

x/l J(x) X/l J(x)
0 - 0.481 82 0.7 - 0.180 27
0.1 -0.451 99 0.8 -0.138 19
0.2 - 0.439 79 0.9 - 0.102 82
0.3 - 0.393 82 1.0 - 0.073 67
0.4 - 0.339 44 1.1 - 0.049 97
0.5 - 0.282 91 1.2 - 0.030 82
0.6 - 0.228 91

As it was pointed out earlier, in punch problems where one assumes complete contact,
there will be stress singularities at the edge of the contact region. The function obtained
above clearly exhibits the expected singularity at y = f (i.e., at the edge of the strip).

Example 2.

In this example we consider a punch whose profile varies transversely as well as longi-
tudinally, i.e., H(x, il) is dependent on tr as well as x.

Let

12 sin 2

H(x, l) = t 12 +X
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where I and 6 are as in the previous example. Then, following the steps outlined above,

T(h, t') = 6 cos ( ) sin dx
foo" f (12 + 2)

216 sin 2 exp 21h= ( smal xp -

Furthermore Mo(h) = (216/f) exp (- 21h/f) and for i = 1,2,3,4, M1(h) = 2'(1/f)exp (- 21h/f).
Hence conditions (c. 1) to (c.8) of Section 4 are satisfied. We have

(h) 41 exp - -2) n ce2n (i, -h 2 ) sin2 il di/

( )16 [2A(2n) (h2) + A2n (h2)] exp (- h) (5.5)
f ( f

where A(2) and A(' ) are the first two coefficients in the Fourier series expansion of ce2n (r, h2).
If, in place of sin2 (= -I cos 2r), the expression for the punch profile involved higher

trigonometric terms in tr (so that z, in terms of y, were given by a polynomial of degree higher
than the second), then the effect would be to introduce further terms in (5.5), but only a finite
number of these. Thus the computations involved would be of the same order of magnitude,
since numerical construction of a Mathieu function generally produces all the significant
coefficients A2n).

We let I = 3f (as in Example 1) and compute the values of

Yn(h) = fo ce2,(i, -h 2) sin 2 d

= (- 1) n [2A (h2) + A+ " (h2)J. (5.6)
4 2

(These quantities are also tabulated in the Appendix.) Thence D (h) is computed using (5.5).
Using the table of values of V(h) and the appropriate values of D,(h) and ce2"(0, -h2),

we obtain the following two approximations for I(Q); namely at q = /2 (i.e., at the center
of the punch) and at r/ = 0 (i.e., at the edge of the strip):

I(2) -1.271 1, (0) 0.7968.

We note that the stress at the center of the punch (a/ = ir/2) is negative. This is in accordance
with the assumption that Tzz = -p wherep is the normal pressure applied to the punch. Also
since I(0) > 0 and Tzz is a continuous function of a, then for some value of q in (0, 7r/2),
Tzz = 0. This shows that the above example does not represent a complete contact problem
since contact is lost near the edge of the strip.

It is worth stressing that this conclusion does not represent a failure of the mathematical
analysis, but shows that the physical assumptions on which the analysis is based are
inconsistent; the physical problem as posed has no solution.
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Essentially a punch of the postulated form cannot maintain complete contact. The
mathematical analysis has succeeded insofar as it has shown up the inconsistencies in the
physical formulation.

In order to determine what, in fact, happens when a punch of the given shape indents the
region one has to determine the actual contact region which is not the entire punch surface.
This might be done by the following method which is essentially an iterative procedure,
suggested by Dr G.M.L. Gladwell.

First we find the pressure p in the strip, where p(x, y) = - zz (x, y, 0), and the contour
in the x,y-plane, on which p = 0. The region of the x,y-plane bounded by this contour, i.e.,
where p > 0, is then chosen to be the new contact region, say S. Next making use of the
expression (see Section 1)

W(x, y, z) = 2- js P( Y) dx' dy',

we find a new p(x, y) such that the prescribed displacement function w(x, y), where
w(x, y) = P(x, y, 0) for x, y E St, satisfies

w(x, A) = 2 Is, p(x', Y) dx' dy'.

If p(x, y) > 0 for all x, y e S1, then we increase the region SI and repeat the last step to
obtain a new p(x, y). On the other hand if p(x, y) < 0 at some point in S, then the region
S, is decreased and again a new p(x, y) is obtained.

The above steps are repeated until we find the region, S,, such that

T(x, y, O) = w(x, y) for (x, y) e S,

(where w(x, y) is prescribed),

p(x, y) > 0 in S,

and

p(x, y) = 0 on the boundary of S.

This method has the disadvantage that it does not specify a precise algorithm for increasing
the region S. Alternative approaches are indicated in the work of Fridman and Chernina
[5] and of Kalker and Van Randen [8].

Example 3

In this example we examine, briefly, a punch whose profile H(x, l) is a combination of the
profiles in the previous two examples, namely let

12
H(x, ) = 12 + x 2 (1 + 2 sin2/),

12 + 2
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where I is defined in Example 1 and 6, 62 are two parameters such that the maximum depth
of the punch is given by 6, + 62. Clearly the normal component of stress at each point,
under the punch, is approximately equal to the sum of the corresponding values given in
Examples 1 and 2, with the appropriate values of 61 and 62. Near the edge of the punch we
have

4
= ~rZ4f(f2 _ y2)1/2 (-0.41306 + 0.796862).

Consequently, when 6,/6 > 1.93, the above expression will be negative and this will ensure
complete contact between the base of the punch and the elastic medium.

6. The strip-crack problem

Since crack and punch problems, when considered as boundary-value problems, can be
treated along similar lines, here we shall briefly discuss the crack problem corresponding to
the strip-punch problem. A more detailed treatment can be found in [4].

It is assumed that a crack has developed inside an elastic medium which satisfies the
properties stated in Section 1. We shall also assume that the crack is opened out symmetric-
ally by equal normal pressures applied to its faces in the sense that if the Cartesian coordinate
system is set up with the origin placed inside the crack, then the crack is opened out
symmetrically with respect to each of the planes x = 0, y = 0 and z = 0.

In the strip-crack problem the crack occupies the infinite strip S defined by z = 0 and
I yl < f. Due to the assumed symmetry we need only consider an elastic medium occupying
an infinite half-space where the crack-face is the region S which is now on the boundary of
the half-space.

For zero shear stress across the plane of the crack the corresponding boundary-value
problem can be stated as follows. A harmonic function v is to be found such that

(i) V2 = 0 for z > 0,
(ii) T --+ 0 as R -+ o in z > 0,

(iii) T(x, y, 0) = 0 for (x, y) outside S, i.e., the normal component of displacement is zero
on the plane z = 0 outside the strip; this condition is due to the assumption that
pressure is applied symmetrically.

(iv) zz(x, Y, 0) = a/azlz=o = -p(x, y), when (x, y) e S.

p(x, y) is some prescribed function which as before is assumed to be symmetric about x = 0
and y = 0.

In terms of elliptic cylinder coordinates, (x, X, ?/) with x e (- o, co), C e [0, 7I] and > 0,
the above problem can be restated as:

(i)' Equation (3.1) of Section 3 holds for x e (- oo, oo), i/ e [0, i7] and > 0,
(ii)' TP - 0 as Ixl, - oc or - oo, for ? E [0, I7],

(iii)' T = Oat = 0, 7r for4 > O and x e (-oo, oo),
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(iv)' a . (_ ) = -q(x, ), where / E (O0, ), x (- o, oo) and q(x,r) p(x, y).

In addition q(x, r) is assumed to be symmetric about x = 0 and 7 = 7r/2.

Let t(x, ) -f sin q(x, rl), then through a set of steps, similar to those outlined in
Section 3, we obtain the formal solution

= g cos hx Kn(h) se2n+,(1, -h 2) Gek2,+ ,(, -h 2 ) dh

where se2,+ (r, -h 2 ) is given by (3.5c) and Gek2,+,(S, -h 2 ) is the corresponding solution
of the modified Mathieu equation which tends to zero as tends to infinity ([10], Sections
11.12 and 11.42).

Similarly from (iv)' (inverting the Fourier cosine transform and using the orthogonality
of Mathieu functions of the first kind) the coefficients K,(h) are given by

Kg(h) = 2= 2fGek2,,, (0, -h 2 )

x fo o t(x, ) se2n+, (r, h2) cos f dx d,

and the normal component of stress across the x,y-plane outside the crack is given
by

Z,,(X,, 0) - fsinh o

where y > f(i.e., > 0).

7. Further developments

A similar study has been made of a punch whose shape is a parabola; this involves use of
parabolical coordinates, and in place of the function cos (2hx/f) we have a modified Mathieu
function. It is hoped to publish this in a subsequent paper.
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Appendix

Tables la and lb give the values of Xn(h), Y (h), as defined by (5.3), (5.6), and Table 2 gives
the values of V,(h) as defined by (5.4).

Table la. X,(h)

h n=0 n=l n=2

0 2.221 441 469 0 0
0.1 2.221 427 585 - 0.007 583 848 0.000 001 636
0.2 2.221 219 435 - 0.031407 379 0.000 026 180
0.3 2.220 319 667 - 0.070 588 656 0.000 132 537
0.4 2.217914985 -0.125 120518 0.000418 888
0.5 2.212 927 644 - 0.194299 759 0.001 022 707
0.6 2.204 135 395 - 0.276 739 705 0.002 120 799
0.7 2.190 380 122 - 0.370 164 399 0.003 929 384
0.8 2.170 843 211 - 0.471 377 772 0.006 704208
0.9 2.145 303 564 - 0.576 506 244 0.010 740 687
1 2.114 259410 - 0.681 499 244 0.016 373 995
1.1 2.078 839 010 - 0.782 723 147 0.023 978 907
1.2 2.040 534 726 - 0.877420 182 0.033 969 063
1.3 2.000 883 691 - 0.963 886 119 0.046 794988
1.4 1.961 218 361 - 1.041 375 181 0.062 939 827
1.5 1.922 541 951 - 1.109 845 921 0.082 911 162
1.6 1.885 514 457 - 1.169 672 890 0.107 226 584
1.7 1.850 503 951 - 1.221 402 588 0.136 390 015
1.8 1.817 660 869 - 1.265 582 147 0.170 855 381
1.9 1.786 898 172 - 1.302 659 052 0.210 974 848
2 1.758 403 358 - 1.332940 592 0.256 931 295

Table lb. Y(h)

h n=0 n=l n=2

0 1.110 720 735 - 0.785 398 164 0
0.1 1.107 937 039 - 0.789 319 906 0.000 655 317
0.2 1.099 505 563 - 0.801 018 988 0.002 631 096
0.3 1.085 203 326 - 0.820 273 785 0.005 956 894
0.4 1.064 722 670 - 0.846 641 808 0.010 682 201
0.5 1.037 775 886 - 0.879 367 502 0.016 876 792
0.6 1.004 247 138 - 0.917295911 0.024631 213
0.7 0.964 370 315 - 0.958 843 429 0.034 057 399
0.8 0.918 877 736 - 1.002079405 0.045 289 377
0.9 0.869 042 367 - 1.044 937 847 0.058 483 987
1 0.816 559436 - 1.085 509 201 0.073 821 469
1.1 0.763 288 377 - 1.122 303 308 0.091 505 643
1.2 0.710 953 694 - 1.154 381 690 0.111 763 259
1.3 0.660 918 525 - 1.181 329 967 0.134 841 826
1.4 0.614 089 782 - 1.203 118 703. 0.161 004 883
1.5 0.570942006 - 1.219929491 0.190523278
1.6 0.531 608 642 - 1.232004 224 0.223 660 509
1.7 0.495 990460 - 1.239 541 809 0.206 649 866
1.8 0.463 850697 - 1.242643044 0.301 661 153
1.9 0.434 885 726 - 1.241 295 658 0.346 755 794
2 0.408 771 762 - 1.235 392 165 0.395 831 869
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Table 2. V(h) Fek (, -h 2 )
Fek2 (0, -h 2)

h Vo V, V2

0.0 0 -2 -4
0.1 - 0.409 35 - 2.006 70 - 4.002 72
0.2 - 0.556 63 - 2.026 06 - 4.010 59
0.3 - 0.690 87 - 2.057 66 - 4.023 98
0.4 - 0.819 26 -2.10221 - 4.042 53
0.5 - 0.943 30 - 2.155 03 - 4.066 20
0.6 - 1.062 95 - 2.220 10 - 4.095 17
0.7 - 1.177 76 - 2.295 68 - 4.128 99
0.8 - 1.287 15 -2.381 52 -4.167 88
0.9 - 1.390 72 - 2.477 21 - 4.211 59
1.0 - 1.488 32 - 2.582 18 - 4.26003
1.1 - 1.579 98 - 2.695 49 - 4.313 32
1.2 - 1.66608 -2.816 19 -4.371 20
1.3 - 1.747 12 - 2.943 17 - 4.433 41
1.4 - 1.823 65 - 3.075 31 - 4.50045
1.5 - 1.896 20 - 3.211 30 -4.571 85
1.6 - 1.965 29 - 3.350 31 - 4.647 70
1.7 -2.031 45 - 3.491 13 -4.728 13
1.8 - 2.094 99 - 3.632 80 - 4.813 01
1.9 - 2.156 29 - 3.774 58 - 4.902 68
2.0 - 2.21464 - 3.915 58 - 4.997 25
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